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Abstract
Enabling large language models with external tools has become a pivotal strategy for extending their
functionality beyond text space. To enhance LLMs’ tool-calling abilities, previous approaches primarily
rely on supervised fine-tuning (SFT) with trajectories distilled from stronger models, often resulting in
imitative reasoning that limits generalization (Chen et al., 2025). In this work, we explore rule-based
reinforcement learning (Guo et al., 2025) to enhance tool-calling in LLMs, resulting in Nemotron-
Research-Tool-N1, a series of tool-calling reasoning models. Rather than enforcing supervision over
intermediate distilled reasoning traces, Tool-N11 is trained with a binary RL reward that assesses only
the format validity and functional correctness of tool invocations. This lightweight supervision allows
the model to develop reasoning strategies independently, without relying on annotated trajectories.
Experiments on several major benchmarks show that Tool-N1-7B/14B clearly outperform GPT-4o. We
conduct a systematic study on the design of rule-based reinforcement learning strategies for training
tool-calling models. Using 5,518 distilled reasoning trajectories, we compare SFT, RL, and the SFT-then-
RL pipeline, finding that the widely adopted SFT-then-RL paradigm does not necessarily outperform
pure RL. We will release the code in https://github.com/NVlabs/Tool-N1

1. Introduction
Recent years, equipping large language models with external tools or functions has attracted significant
attention, demonstrating impressive performance across a wide range of domains (Bran et al., 2023; Qu et al.,
2025). For instance, LLMs augmented with search engines can answer questions that go beyond their training
data (Komeili et al., 2021), while those equipped with Python interpreters are capable of solving complex
mathematical problems by leveraging external libraries (Wu et al., 2023). These tools effectively enable LLMs
to operate beyond purely textual tasks, substantially extending their functional capabilities.

To enhance LLMs tool-calling capability, existing research has primarily focused on synthesizing large volumes
of tool-use trajectories using advanced language models (Liu et al., 2024; Yin et al., 2025; Zhang et al., 2024),
followed by supervised fine-tuning (SFT) on the generated data. Although step-by-step reasoning has been
shown to play a critical role in enabling LLMs to solve complex tasks (Wei et al., 2022), these synthetic datasets
often lack explicit reasoning steps. Consequently, current pipelines typically supervise only the tool calls step,
without providing guidance on the underlying reasoning process during training. In many cases, reasoning
is either omitted entirely in training stage or deferred to the inference stage via prompting techniques (Yao
et al., 2023,). While one workaround is to distill reasoning trajectories from advanced models and then train
student models via SFT (Chen et al., 2025), this approach often yields pseudo reasoning: models merely learn
to mimic surface-level patterns without truly internalizing the decision-making process (Chen et al., 2025).

Recently, simple rule-based R1-style reinforcement learning (Guo et al., 2025) has been shown to substantially
enhance the complex reasoning capabilities of LLMs (Lu et al., 2025; Ma et al., 2025; Shen et al., 2025). In
these R1-style RL training, rewards are assigned based on the correctness of the final answer and output format,
allowing the model to learn the intermediate reasoning steps without explicit reasoning supervision. This
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<think> I will utilize the market_trends api tool… <think> <tool_call> 
market_trends_api (id="us") <tool_call> 
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Figure 1: Overview of the training pipeline for Nemotron-Research-Tool-N1 (Tool-N1). Starting from
standard SFT tool-calling data comprising user queries and candidate tools, we train LLMs to produce structured
reasoning and tool calls using a binary reward function within the GRPO algorithm. As supervision is only
applied to the format and tool-call correctness, the training process does not require curated reasoning
trajectories.

paradigm naturally inspired us to explore the utilization of these rule-based RL in training tool call models, for
the following reasons:

• Rule-based reward design provides interpretable supervision signals by verifying the correctness of tool
calls. In contrast to SFT, which relies on exact next-token prediction and enforces strict output matching,
RL allows for more flexibility. Semantically equivalent tool calls, such as those with reordered arguments,
can still be rewarded correctly. This enables models to generalize beyond rigid string-level imitation.

• R1-style RL does not require tool-call data with explicit reasoning annotations. Instead, it imposes
minimal constraints, requiring only that the model follow a structured output format. This makes it
possible to train reasoning capabilities directly from available SFT data. As a result, the model can acquire
reasoning skills without curating reasoning traces.

Building on these insights, we address two key questions in this work: Can rule-based RL be effectively applied to
train tool-calling models? How should the RL pipeline be designed? To this end, we conduct a systematic study on
the design of rule-based reinforcement learning strategies for tool-call training, resulting in Nemotron-Research-
Tool-N1 (Tool-N1), a series of reasoning tool-using LLMs trained with rule-based RL. The training enforces a
simple-tructured reasoning-action format, guiding the model to produce explicit reasoning before invoking
tools. We employ a binary reward function that evaluates the correctness of both the reasoning format and
tool invocations. This reward design provides precise yet flexible supervision, allowing variation in argument
ordering while ensuring functional correctness. The training procedure is shown in Figure 1.

We conduct extensive experiments on BFCL (Yan et al., 2024), APIBank (Li et al., 2023) and ACEBench (Chen
et al., 2025). Results show that, Tool-N1-7B/14B, built upon Qwen2.5-7B/14B-Instruct, clearly outperform
GPT-4o and other strong baselines. For instance, Tool-N1-14B achieves approximately 2% and 5% performance
improvements on BFCL and APIBank than GPT-4o. Smaller Tool-N1-7B, also surpasses the closed-source GPT-4o
and the specialized fine-tuning model Hammer2.1-7B on BFCL by 0.85% and 2.97%, respectively. We further
conduct extensive experiments to analyze various aspects of the proposed method, including reward design
and training data composition. Additionally, we curate a dataset of 5,518 tool-calling reasoning trajectories and
perform a systematic study on the roles of SFT, RL, and their combinations. Notably, we find that the widely
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adopted "SFT-then-RL" paradigm does not necessarily yield better performance than pure RL.

2. Related Work
Tool Learning. Enhancing large language models (LLMs) with external tools has demonstrated significant
potential in addressing complex tasks (Bran et al., 2023; Qu et al., 2025; Wang et al., 2024). Typical applications
include integrating LLMs with search engines (Komeili et al., 2021; Lazaridou et al., 2022; Shuster et al., 2022;
Zhang et al., 2024), calculator (Nakano et al., 2021), vision tools (Hu et al., 2024; Ma et al., 2024), and Python
interpreters (Song et al., 2024; Wang et al., 2024; Wu et al., 2023). Research efforts aimed at improving LLMs’
tool-use capabilities can be broadly divided into two categories. The first one focuses on improving the backed
LLM itself. This typically involves curating large-scale supervised datasets (Liu et al., 2024; Ma et al., 2024;
Qin et al., 2023; Yin et al., 2025; Zhang et al., 2024) and applying either SFT (Liu et al., 2024; Qin et al., 2023;
Zhang et al., 2024) or DPO reinforcement learning (Yu et al., 2024; Zeng et al., 2025). These approaches are
primarily data-centric (Zha et al., 2025) and rely heavily on the availability of high-quality, large-scale training
data. The second category explores prompting-based techniques that do not alter the underlying model. These
methods aim to elicit tool-use behavior through strategies such as in-context learning with demonstrations (Kim
et al., 2023; Paranjape et al., 2023) or the design of advanced prompting schemes (Yao et al., 2023,; Zhang
et al., 2024). However, due to the inherent limitations of the base models, such prompting approaches often
struggle with tasks that require intricate reasoning or complex multi-step actions.

LLM Reasoning and Reinforcement Learning. Recent efforts in the LLM research community have increasingly
focused on improving reasoning capabilities, marking a shift from train-time scaling to test-time scaling (Muen-
nighoff et al., 2025), with the goal of enabling models to handle complex problem-solving tasks (Wei et al.,
2022). Earlier approaches often relied on step-level supervision or learned reward models to guide the model’s
reasoning trajectory (Gao et al., 2024; Li and Li, 2024). More recently, DeepSeek-R1 (Guo et al., 2025) has
demonstrated that simple rule-based reinforcement learning can effectively induce strong reasoning behaviors.
In this framework, reward functions are defined based on predefined criteria, i.e., checking whether the model’s
final answer matches the ground truth in math problems. These rewards target only the correctness of the final
answer, allowing the model to learn the intermediate reasoning steps without explicit reasoning supervision.
This R1-style reasoning paradigm has shown success across various domains, including mathematics (Shao
et al., 2024), coding (Liu and Zhang, 2025), and vision tasks (Shen et al., 2025). In parallel, several recent
studies have integrated external tools such as search engines (Jin et al., 2025) and code interpreters (Feng
et al., 2025) into reinforcement learning frameworks for LLM reasoning. These approaches primarily focus on
training LLMs to effectively utilize a single, general-purpose tool to support one single reasoning chain. In
contrast, our work aims to enhance LLMs’ tool-calling ability in more general tool-use settings, where multiple
tools with complex functionalities and argument structures are available.

3. Problem Formulation
We first provide the problem formulation. Consider a LLM and a set of external tools 𝒵 = {𝑧𝑖}𝐼𝑖=𝑖 that the LLM
can access. Each tool 𝑧𝑖 could be represented as a 3-tuple (𝑛𝑖, 𝑑𝑖, 𝑘𝑖) which includes essential information for
tool usage: 𝑛𝑖 denotes the tool’s name, 𝑑𝑖 provides a natural language descriptions, and 𝑘𝑖 specifies the tool’s
input parameters instructions. The model’s objective is to respond to user queries in accordance with a policy
𝜋. To achieve this, the LLM may issue multiple tool calls throughout the interaction, each with appropriate
input parameters.

At any decision step 𝑡, the LLM receives two types of input: (1) the historical context 𝑐𝑡, which consists of all
preceding tool-call and observation pairs, and (2) the set of currently available tools 𝒵 that can be utilized at
this step. The LLM must then decide on the next action. Formally, the decision-making process is defined as:

𝜋(𝑐𝑡,𝒵) → 𝑎𝑡, s.t. 𝑎𝑡 ⊆ 𝒵, (1)
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where 𝑎𝑡 denotes the action selected at step 𝑡. This action corresponds to one or more tool calls drawn from
the accessible tool subset 𝒵. 𝑐𝑡 represents the historical context. Specifically,{︃

𝑎𝑡 = {𝑧0(𝑝0), . . . , 𝑧𝑚(𝑝𝑚)},
𝑐𝑡 = (𝑎0, 𝑜0, . . . , 𝑎𝑡, 𝑜𝑡)

(2)

where each 𝑧𝑚 denotes the 𝑚-th tool invoked and 𝑝𝑚 its corresponding parameters. The value of 𝑚 indicates
the number of tool calls made at time 𝑡. We employ 𝑜𝑡 denotes the observation after action 𝑎𝑡 is taken. The
ultimate goal of tool learning is to enable LLMs with a generalized policy 𝜋 that effectively addresses user
queries by producing a sequence of action-observation pairs (𝑎𝑡, 𝑜𝑡).

4. Nemotron-Research-Tool-N1
In this subsection, we explore the use of R1-style reinforcement learning for training tool-calling language
models, resulting in Nemotron-Research-Tool-N1, a series of general-purpose tool-using reasoning LLMs.
Tool-N1 is built on the GRPO algorithm (Guo et al., 2025; Shao et al., 2024), aiming to enhance tool-calling
capabilities with reasoning in complex scenarios where the LLM must solve queries using a set of accessible
tools. We further conduct a systematic study on the design of rule-based reinforcement learning strategies for
this training paradigm.

Formally, given the historical context 𝑐𝑡 and the set of currently available tools 𝒵, the model generates a set
of candidate responses [𝑂1, 𝑂2, ..., 𝑂𝑁 ], where each 𝑂𝑛 ∈ 𝒪. Here 𝒪 denotes the space of possible output
responses, each comprising: (1) textual reasoning. (2) an associated action 𝑎𝑛. These responses are evaluated
using a reward function, yielding a reward set {𝑟1, 𝑟2, ..., 𝑟𝑁}. We then optimize the policy 𝜋𝜃 using GRPO, the
optimization objective is shown below:

ℒGRPO(𝜃) = E(𝑐𝑡,𝒵) E𝑂𝑖∼𝒪

[︁
min

(︁
𝜌𝑖𝐴𝑖, clip(𝜌𝑖, 1− 𝜖, 1 + 𝜖)𝐴𝑖

)︁
− 𝛽KL

(︀
𝜋𝜃 ‖𝜋old

)︀]︁
,where 𝜌𝑖 =

𝜋𝜃(𝑂
𝑖 | 𝑐𝑡,𝒵)

𝜋old(𝑂𝑖 | 𝑐𝑡,𝒵)
. (3)

𝜖 and 𝛽 represent tunable hyperparameters. 𝐴𝑖 represents the relative advantage of the 𝑖-th response, which is
computed as follows:

𝐴𝑖 =
𝑟𝑖 −mean({𝑟1, 𝑟2, . . . , 𝑟𝑁})

std({𝑟1, 𝑟2, . . . , 𝑟𝑁})
, (4)

where 𝑚𝑒𝑎𝑛 and 𝑠𝑡𝑑 represent the mean and standard deviation of the rewards, respectively. In subsequent
sections, we detail the following components of our approach: (1) the preparation of tool-calling data and its
integration into the RL training pipeline, (2) the structured reasoning template adopted during training, and
(3) the reward modeling strategy used to compute the reward signal 𝑟.

4.1. Data Preparation
Numerous prior works have focused on collecting large-scale tool-calling trajectories (Liu et al., 2024; Qin
et al., 2023; Yin et al., 2025; Zhang et al., 2024), followed by supervised fine-tuning to improve LLMs’ tool-use
capabilities. Each instance in these dataset typically consist of natural language user query 𝑄, paired with a
sequence of ground-truth tool invocation steps in the form (𝑎0, 𝑜𝑜, . . . , 𝑎𝑡, 𝑜𝑡). The model is then trained to
predict each subsequent action 𝑎𝑡+1, conditioned on the observed trajectory up to that point. However, SFT
often exhibits limited generalization ability, as the model tends to memorize the training trajectories rather than
developing robust, intrinsic reasoning capabilities for tool usage which has been pointed out in recent work (Chen
et al., 2025). To fully leverage the available tool-calling data in the community, we unify and preprocess data
from xLAM (Zhang et al., 2024) and a subset of ToolACE (Liu et al., 2024) datasets, which provide single-turn
and multi-turn synthetic tool-calling trajectories. As these datasets are generated by potentially unstable LLMs,
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xLAM ToolACE
Single-Turn Multi-Turn Single-Turn Multi-Turn

Raw Data 60000 0 10500 800
After Process 60000 0 8183 1470

Table 1: The statistic information in the data preparation stage.

they often contain inconsistencies and un-
structured formats unsuitable for GRPO
training.

We standardize the data by filtering out
samples with invalid tool calls, specifi-
cally, those involving tools absent from
the candidate tool list. Available tools are

extracted from the system prompt, and both candidate and ground-truth tools are parsed into structured
dictionary formats. Instances that fail JSON parsing or contain formatting inconsistencies are discarded. We
ensure this processing yields a clean and consistent data suitable for reinforcement learning. For multi-turn
data from the ToolACE, we further segment each trajectory into multiple single-step prediction instances,
where each instance contains one target tool call and the preceding steps are treated as context. We train LLMs
using R1-style GRPO to predict each tool invocation step based on this contextual information and provided
tools. We present the statistic information of the proceed data in Table 1.

4.2. Thinking Template

Thinking Template

Here is a list of functions in JSON format that you can invoke:
<tools> {tools} </tools>.
In each action step, you MUST:
1. Think about the reasoning process in the mind and enclosed your reasoning within <think></think> XML tags.
2. Then, provide a json object with function names and arguments within <tool_call> </tool_call> XML tags.
i.e., <tool_call>["name": <function-name>, "arguments": <args-json-object>, "name": <function -name2>,
"arguments": <args-json-object2>, ...]</tool_call>
3. Make sure both the reasoning and the tool call steps are included together in one single reply.
A complete reply example is: <think>To address the query, I need to send the email to Bob and then buy the
banana through walmart.</think> <tool_call> ["name":"email", "arguments":"receiver": "Bob", "content": "I will
bug banana through walmart", "name": "walmart", "arguments": "input": "banana"]</tool_call>. Please make sure
the type of the arguments is correct.

Figure 2: The resoning prompt template used during training and inference. The prompt guides the LLM to
explicitly separate its internal reasoning (within <think> tags) from tool invocation actions (within <tool_call>
tags). We show the full prompt template in Appendix E.

Following prior work (Guo et al., 2025), we adopt a lightweight prompting template to elicit tool calls from the
LLM which is shown in Figure 2. The prompt explicitly instructs the model to generate intermediate reasoning
within <think>...</think> tags, followed by the tool invocation enclosed in <tool_call>...</tool_call>
tags. The design philosophy behind this template is to minimize reliance on overly rigid formatting rules, which
could reducing the risk of overfitting to specific prompt patterns. By allowing greater flexibility in how the
model expresses its reasoning, we aim to promote more robust generalization across diverse tool-use scenarios.
Additionally, the use of this lightweight prompting design during training enables the resulting model to be
more easily integrated with more sophisticated prompting strategies (Yao et al., 2023,; Zhang et al., 2024).

4.3. Reward Modeling
Following the data preparation described in Section 4.1, we construct a training dataset in which each ground-
truth tool call is represented as a structured dictionary. This format enables reliable verification of tool names
and argument-value pairs during reinforcement learning rather than simply string match. Leveraging this
structure, we define a binary reward function in which jointly evaluates the correctness of the reasoning format
and the accuracy of the tool call.

Format Checking. Following prior work (Guo et al., 2025; Meng et al., 2025; Shao et al., 2024), we incorporate
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format checking during training to verify whether the model’s output adheres to the expected structural
conventions, specifically, whether the reasoning is enclosed within <think>...</think> tags and the tool call
is properly placed within <tool_call>...</tool_call> tags. This structural constraint encourages the model
to engage in explicit reasoning before tool calling, rather than shortcutting to the final answer. By enforcing
format adherence, we aim to cultivate the model’s intrinsic reasoning ability, which may potentially contributes
to improved generalization, particularly on out-of-distribution inputs.

Tool-Calling Checking. We also check the correctness of the tool call. The tool-call output is parsed as
dictionaries, enabling exact matching against the ground-truth. This involves checking whether the predicted
tool name matches the ground-truth and whether all required arguments are present correctly. This strict
matching criterion ensures that the model learns to generate functionally precise and executable tool calls.
Compared to the next-token prediction logic in SFT, this dictionary-based matching introduces greater flexibility.
It allows argument order to vary without penalization, encouraging the model to focus on the underlying
semantics rather than surface-level memorization.

Binary Reward Definition. Given previous context 𝑐𝑡 and the LLM output 𝑂𝑡, we define a binary reward
function 𝑟(𝑐𝑡, 𝑂𝑡) ∈ {0, 1} that assigns a reward of 1 if both of the following conditions are met: (1) Format
Correctness: The model output adheres to the structural format, i.e., contains both <think>...</think>
and <tool_call>...</tool_call> tags. (2) Tool Call Correctness: The predicted tool call 𝑎𝑡 ∈ 𝑂𝑡 exactly
matches the ground-truth call 𝑎*𝑡 in both tool name and all argument key-value pairs.

𝑟(𝑐𝑡, 𝑂𝑡) =

{︃
1, if FormatCorrect(𝑂𝑡) ∧ ToolCallMatch(𝑎𝑡, 𝑎*𝑡 )

0, otherwise
(5)

where FormatCorrect(𝑂𝑡) returns true if the output is correctly wrapped in both required tags, and the
ToolCallMatch(𝑎𝑡, 𝑎*𝑡 ) returns true if 𝑎𝑡 matches the ground-truth tool call 𝑎*𝑡 exactly in structure and content.
We find that a simple binary reward scheme is most effective for training tool-calling LLMs, as validated through
extensive ablation studies presented in Section 5.4.1.

5. Experiments
We conduct experiments to prove the superiority of the proposed method. We begin by providing the experi-
mental settings in Section 5.1. We then evaluate the training method representative benchmarks to verify its
effectiveness. Finally, we perform in-depth investigations for the training paradigam.

5.1. Settings
Datasets. We utilize a subsets of ToolACE (Liu et al., 2024) and xLAM (Zhang et al., 2024) as our training
data. ToolACE (Liu et al., 2024) encompasses a wide range of tool-calling scenarios, including examples with
multiple candidate tools and parallel tool calls, and covers a pool of 26,507 tools. In contrast, xLAM focuses on
single-turn tool calling, comprising 60,000 instances collected through APIGen (Liu et al., 2024).

Models. Unless otherwise noted, we use Qwen2.5-7B/14B-Instruct (Yang et al., 2024) as the primary backbone
model throughout this work. To assess the generalization ability of our method, we also perform evaluations
on alternative backbone models, including multiple variants from the LLaMA family in different scales. In our
experiments, we compare against both general-purpose open-source models, such as the GPT series and Gemini-
2.0, as well as specialized tool-calling models, including ToolACE-8B (Liu et al., 2024), xLAM-2 (Prabhakar
et al., 2025), and Hammer2.1 (Lin et al., 2024).

Benchmarks. We primarily evaluate the performance on single-turn tool-calling scenarios with several represen-
tative benchmarks, including the Berkeley Function Call Leaderboard (BFCL) (Yan et al., 2024), API-Bank (Li
et al., 2023) and ACEBench (Chen et al., 2025). For BFCL, we conduct evaluations on both the Non-live and
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Non-Live Live Overall

Models Simple Multiple Parallel
Parallel
Multiple

Simple Multiple Parallel
Parallel
Multiple

Non-live Live Overall

GPT-4o 79.42 95.50 94.00 83.50 84.88 79.77 87.50 75.00 88.10 79.83 83.97
GPT-4o-mini 80.08 90.50 89.50 87.00 81.40 76.73 93.75 79.17 86.77 76.50 81.64
GPT-3.5-Turbo-0125 77.92 93.50 67.00 53.00 80.62 78.63 75.00 58.33 72.85 68.55 70.70
Gemini-2.0-Flash-001 74.92 89.50 86.50 87.00 75.58 73.12 81.25 83.33 84.48 81.39 82.94
DeepSeek-R1 76.42 94.50 90.05 88.00 84.11 79.87 87.50 70.83 87.35 74.41 80.88
Llama3.1-70B-Inst 77.92 96.00 94.50 91.50 78.29 76.16 87.50 66.67 89.98 62.24 76.11
Llama3.1-8B-Inst 72.83 93.50 87.00 83.50 74.03 73.31 56.25 54.17 84.21 61.08 72.65
Qwen2.5-7B-Inst 75.33 94.50 91.50 84.50 76.74 74.93 62.50 70.83 86.46 67.44 76.95
xLAM-2-70b-fc-r (FC) 78.25 94.50 92.00 89.00 77.13 71.13 68.75 58.33 88.44 72.95 80.70
ToolACE-8B (FC) 76.67 93.50 90.50 89.50 73.26 76.73 81.25 70.83 87.54 78.59 82.57
Hammer2.1-7B (FC) 78.08 95.00 93.50 88.00 76.74 77.4 81.25 70.83 88.65 75.11 81.88
Tool-N1-7B 77.00 95.00 94.50 90.50 82.17 80.44 62.50 70.83 89.25 80.38 84.82
Tool-N1-14B 80.58 96.00 93.50 92.00 84.10 81.10 81.25 66.67 90.52 81.42 85.97

Table 2: Comparison on the BFCL (last updated on 2025-04-13). Average performance is calculated using the
official script. The best results in each category are highlighted in bold, while the second-best are underlined.

Live subsets, corresponding to synthetic and real-world data. Each subset includes four categories: Simple,
Multiple, Parallel, and Parallel Multiple. Simple and Multiple scenarios both involve the invocation of a single
tool, with the Multiple category featuring multiple candidate tools. In contrast, Parallel and Parallel Multiple
scenarios require the simultaneous invocation of multiple tools. For API-Bank and ACEBench, we exclude
multi-turn cases from our evaluation. Performance across all benchmarks is reported in terms of accuracy.

Other Implementation Details. We conduct all RL training using the open-source reinforcement learning
library Verl (Sheng et al., 2024). Training is performed with a batch size of 1024 and a learning rate of 1×10−6.
The temperature is fixed at 0.7. We set the entropy coefficient to 0, as we observe that introducing entropy
negatively impacts exploration during training. The KL divergence loss coefficient is set to 1× 10−3 across all
experiments. All training runs are executed on a cluster of 4 nodes, each equipped with 8 NVIDIA H100 80GB
GPUs. For SFT training, we employ LLaMA-Factory (Zheng et al., 2024). More details of the implementations
could be found in Appendix B.
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Figure 3: Performance comparison on two additional benchmarks, ACEBench and API-Bank.
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5.2. Main Results
Results on BFCL. Table 2 presents the evaluation results on the BFCL benchmark, including detailed accuracy
for each subcategory. We adopt the official evaluation script from the BFCL leaderboard and report the average
accuracy across categories. We observe that specialized fine-tuned models, such as ToolACE-8B and Hammer-
2.1-7B, benefit significantly from domain-specific training data, achieving better performance than GPT-4o-mini
despite their smaller model sizes. However, neither surpasses GPT-4o. In contrast, Tool-N1-7B and Tool-N1-14B
models achieve clearly superior overall performance, outperforming both state-of-the-art closed-source models
(e.g., GPT-4o) and domain-specialized fine-tuned models (e.g., xLAM-2-70B and ToolACE-8B). Notably, our
trained tool-call reasoning models significantly outperform supervised fine-tuning (SFT) baselines trained on
the same data sources, including the ToolACE (Liu et al., 2024) and xLAM (Zhang et al., 2024) series. These
results collectively demonstrate that the R1-style reinforcement learning paradigm provides a more effective
approach for improving the tool-calling capabilities of large language models.

Results on More Benchmarks. To provide a more comprehensive evaluation, we conduct experiments on
two additional benchmarks: ACEBench (Chen et al., 2025) and APIBank (Li et al., 2023). The results are
shown in Figure 3. On these benchmarks, Tool-N1-7B achieves substantial absolute improvements of over
20% on APIBank and over 30% on ACEBench compared to the base models. Notably, Tool-N1-7B outperforms
GPT-4o-mini on both benchmarks, while Tool-N1-14B surpasses GPT-4o by 5.03%. These results demonstrate
that models trained using our proposed method generalize effectively across diverse tool-calling scenarios,
thereby opening new opportunities for scaling performance in LLM tool-augmented learning.

5.3. Deep Analysis
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Figure 4: Scaling performance across model sizes us-
ing the Qwen2.5-Instruct series. We report results for
both RL-trained and original instruction-tuned models
without further post-training.
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Figure 5: Performance across different backbones. All
models use their instruction-tuned variants. At com-
parable scales, Qwen consistently outperforms both
LLaMA 3 and LLaMA 3.1.

5.3.1. Scalability and Generalizability
Scalability. The scaling law, which characterizes the relationship between model size and performance, plays
a critical role in understanding the effectiveness of the training methods. We assess the scaling behavior of
the proposed training method by evaluating a range of model sizes, including 0.5B, 1.5B, 3B, 7B and 14B
from the Qwen2.5-Instruct series. For comparison, we also report the performance of the original instruction-
tuned models without any additional training. We report average performance on both the Live and Non-Live
categories of the BFCL benchmark, with detailed results presented in Figure 4. As expected, larger models
consistently outperform smaller ones in both evaluation settings. Notably, performance improvements from
post-training are limited for smaller models (0.5B and 1.5B), whereas larger models exhibit substantial gains.
These findings suggest that the R1-style training method scales more effectively with increasing model size.
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Generalizability. We further evaluate the impact of LLM backbones Touvron et al. (2023) to investigate
the generalization capability of the proposed method. In addition to the Qwen, we include experiments
using LLaMA series: LLaMA3-8B-Instruct and LLaMA3.1-8B-Instruct. These evaluations are conducted on the
BFCL benchmark, with results presented in Figure 5. Our findings show that Qwen2.5-Instruct significantly
outperforms both LLaMA variants at the same model scale. This advantage is likely due to Qwen’s inherently
stronger reasoning capabilities, as observed by Gandhi et al. (2025). As a result, the R1-style training paradigm
is able to elicit better performance when applied to Qwen series LLMs.

Finding 1

The R1-style trainingmethod scales effectively withmodel size, yielding significantly greater performance
gains for larger models compared to smaller ones. It also generalizes well across backbones, with Qwen
models outperforming LLaMA variants at the same scale.

5.3.2. SFT or RL? A Deep Investigation into the Training Recipes

Method No-Reason SFT Reason-SFT Reason-SFT+RL RL
Recipes 50% SFT 100% SFT 50% SFT 100% SFT 50% SFT+50%RL 50% RL 100%RL
Non-Live 85.94 86.40 86.40 87.54 88.19 87.12 88.23

Live 76.09 76.54 76.61 77.87 78.16 78.90 78.24
Avg 81.02 81.47 81.50 82.71 83.17 83.01 83.24

Table 3: Performance comparison of different training recipes on tool-calling tasks with 5,518 instances from
ToolACE. “No-Reason SFT” fine-tunes on tool-call data without reasoning traces; “Reason-SFT” uses reasoning
trajectories; “Reason-SFT+RL” applies RL after Reason-SFT; Percentages indicate the proportion of data used
for each stage.

Although the proposed R1-style reinforcement learning paradigm demonstrates strong performance, we conduct
a more comprehensive comparison against SFT, including both SFT with and without reasoning trajectories.
Our goal is to identify the most effective training recipe for tool-using LLMs with reasoning capabilities.
To ensure fair comparison, we filter out single-turn data from ToolACE and distilled reasoning trajectories
using DeepSeek-R1 (Guo et al., 2025), one of the most advanced tool-using language models. We prompt
DeepSeek-R1 to generate responses with reasoning enclosed in <think>...</think> tags and tool calls in
<tool_call>...</tool_call> tags. Only trajectories that (1) follow the correct format and (2) produce correct
tool calls are retained, yielding 5,518 high-quality instances. All the experiments are performed upon Qwen2.5-
Instruct model. Using these data, we construct several training recipes: (1) Reason-SFT, which performs
SFT on distilled reasoning trajectories; (2) No-Reason SFT, which performs SFT only on corresponding data
without reasoning traces; (3) RL, the proposed RL training method. (4) Reason-SFT+RL, which applies SFT
followed by RL on the same dataset.

We could observe that: (1) Although the combination of SFT on reasoning trajectories followed by RL is
commonly regarded as the best practice in many domains, we do not observe improved performance under
equal data budgets in the tool-calling setting (83.17% vs. 83.24%). In fact, SFT may even hinder performance,
a phenomenon also noted by Chen et al. (2025). (2) Pure RL outperforms both Reason-SFT and No-Reason
SFT under equal data budgets, achieving the best performance (83.24% with 100% RL vs. 82.71% with 100%
Reason-SFT and 81.47% with 100% No-Reason SFT). (3) Interestingly, No-Reason SFT performs only slightly
worse than Reason-SFT (e.g., 81.47% vs. 82.71%), suggesting that providing reasoning traces during SFT offers
limited additional benefit.
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Finding 2

The commonly adopted SFT-then-RL pipeline does not necessarily outperform pure RL in tool-calling
tasks. Notably, pure RL, trained without reasoning distillation data, demonstrates stronger performance
than any other combinations involving SFT and RL.

5.4. Visualization
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Figure 6: Learning curves across training steps for Tool-N1-7B and Tool-N1-14B. We report KL divergence,
average response length, and validation accuracy.

We present additional visualizations of the training dynamics in Figure 6, including KL divergence, average
response length, and validation accuracy over training steps. The KL divergence and validation accuracy,
shown in Figures 6a and 6c, exhibit consistent improvement, suggesting that the model get stable learning
and exploration under the training setup. Notably, Figure 6b shows no significant increase in response length
throughout training, which contrasts with trends observed in prior R1-style training works (Guo et al., 2025;
Liu and Zhang, 2025; Shen et al., 2025). Tool-N1-7B maintains a relatively flat trajectory from the beginning,
while Tool-N1-14B gradually decreases to a comparable length. This observation suggests that longer reasoning
chains do not necessarily lead to better tool-use performance; instead, there appears to be an vertain response
length that could be sufficient for accurate tool calling.

5.4.1. Ablations

Fine-Grained Reward Binary Reward

Split w/ Reason Format
Partial Reward

w/ Reason Format +
Func name Partial Rewards

w/o
Reason Format

w/
Reason Format

Non-Live 87.83 88.54 87.63 89.25
Live 79.64 76.61 76.24 80.38
Avg 83.74 82.58 81.94 84.82

Table 4: Ablation study on reward granularity. We compare fine-grained reward designs, where partial credit is
given for correct reasoning format and correct function names in function call stages, with binary rewards that
assign full reward only when all conditions are fully satisfied. The results show that binary rewards consistently
yield better performance, especially in the Live setting.

Ablations on Reward Design. To assess how reward granularity affects model behavior, we evaluate Tool-N1-
7B under two reward schemes: fine-grained and binary (Table 4). The fine-grained setting provides partial
reward, 0.2 for correct reasoning format and an additional 0.2 for matching function names, even if the final
function call is incorrect. In contrast, the binary setting only gives a reward of 1.0 when all components are
correct, including reasoning, function name, and arguments. Here, w/ Reason Format requires the model to
output intermediate reasoning in a specific format, while w/o removes this constraint. The results are shown in
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Table 4. Tool-N1 achieves consistently better performance with binary rewards, particularly on the Live subset
(80.38% vs. 76.61%), which involves more realistic inputs. We attribute this to reduced reward hacking (Pan
et al., 2024): under fine-grained schemes, the model may overfit to superficial cues such as formatting or partial
matches, without ensuring full execution correctness. Furthermore, within the binary setup, we observe that
removing the reasoning format constraint significantly hurts performance (dropping from 80.38% to 76.24%).
This highlights the critical role of structured reasoning in guiding Tool-N1-7B toward reliable and generalizable
tool use, especially in complex, real-world scenarios.

Finding 3

Binary rewards lead to superior performance compared to fine-grained rewards, especially on realistic
inputs. Additionally, enforcing structured reasoning is crucial, removing it significantly degrades
performance, underscoring its importance in guiding reliable tool use.

Ablations on Training Data Composition.

Recipe Raw xLAM ToolACE xLAM ToolACE ToolACE
Model 8B 8B w/o ToolACE w/o xLAM w/ xLAM

Non-Live 73.94 84.40 87.54 87.77 87.67 89.25
Live 61.14 66.90 78.59 76.24 79.58 80.38
Avg 67.54 75.65 82.57 82.01 83.63 84.82

Table 5: Effect of training data composition on Tool-N1-7B performance. We compare the full training recipe
against ablated variants that exclude xLAM or ToolACE data. Results show that both sources contribute to
performance, with ToolACE providing greater gains.

We then investigate how different data composition strategies affect performance on the BFCL benchmark.
Experiments are conducted using the Tool-N1-7B model, with results presented in Table 5. Our key findings
are as follows: (1) ToolACE data yields particularly strong improvements in the live setting. Overall, these
results suggest that progressively enriching the training data enhances the model’s tool-calling proficiency.
(2) Compared to the raw model (Qwen2.5-7B-Instruct), R1-style training significantly enhances tool-calling
capabilities. (3) Compared to models trained using SFT on the same data source, the R1-style training
consistently yields better performance. Specifically, the Tool-N1-7B model trained solely on xLAM data
outperforms the xLAM-8B SFT model by 6.36%, and the Tool-N1-7B model trained solely on the ToolACE
subset exceeds the ToolACE-8B SFT model by 1.62%, despite using only a subset of the data.

6. Conclusion
We introduce Nemotron-Research-Tool-N1, a series of tool-using language models trained using a rule-based
reinforcement learning (R1) paradigm. Unlike previous approaches that rely on supervised fine-tuning with
annotated reasoning trajectories, Nemotron-Research-Tool-N1 employs a reward function that supervises only
the final answer and the structural format of the reasoning. This enables the model to learn effective reasoning
strategies without requiring step-by-step annotations. Experimental results demonstrate that Nemotron-
Research-Tool-N1 consistently outperforms existing baselines across multiple benchmarks, including BFCL,
APIBank, and ACEBench. In addition, we curate a set of 5,518 distilled reasoning trajectories to analyze the
effects of supervised fine-tuning, reinforcement learning, and their combination. Our findings indicate that the
commonly used SFT-then-RL pipeline does not necessarily yield better performance than pure RL.
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A. Benchmarks
(1) BFCL. BFCL evaluates the LLM’s ability to call functions accurately. The data and leaderboard is consistly
evolving and the benchmark is widely-used in the tool learning research. The current version (v3) categorizes
the data into three types: Live, Non-Live, and Multi-turn. This paper primarily focuses on the Live and Non-Live
categories. Non-Live refers to test cases generated synthetically or curated by researchers, while Live data
consists of real user-contributed queries. (2) ACEBench. ACEBench is designed to evaluate tool-use capabilities
with fine-grained categorization which could be divided into three primary categories: Normal, Special, and
Agent. In this study, we concentrate on two sub-categories within the Normal category: Atom and Single-turn.
Atom cases consist of API calls that utilize specific parameter types. The Single-turn subset encompasses both
sequential and parallel tool-calling scenarios. (3) APIBank. API-Bank is a tool-calling benchmark with two
modes: Call and Retrieve + Call. The model is expected to interpret user intents from the dialogue and execute
the corresponding local Python tools. Evaluation is based on whether the tool outputs align with the expected
results. In our experiments, we specifically utilize the Call mode.

B. More Implementation Details

Hyperparameter Value Hyperparameter Value Hyperparameter Value
Batch_Size 1024 Max Prompt Length 4096 Max Response Length 8192
Learning Rate 1e-6 Temperature 0.7 Epoch Number 7
KL Coefficient 1e-3 Entropy Coefficient 0 Rollout Number 5

Table 6: The detailed hyperparameters used for RL training.

We conduct RL experiments using the open-source Verl library. We perform hyperparameter tuning via grid
search to ensure a stable and efficient training, focusing primarily on the learning rate, KL coefficient, entropy
coefficient, number of rollouts, and batch size. The hyperparameters used during training are summarized in
Table 6. The key hyperparameters used during training are summarized in Table 6. For both Tool-N1-7B and
Tool-N1-14B, we adopt the same set of hyperparameters.

C. More Learning Curves
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(a) Reward

0 20 40 60 80 100 120 140
Step

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
Nemotron-Research-Tool-N1-7B
Nemotron-Research-Tool-N1-14b

(b) Entropy Loss
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Figure 7: More Learning curves across training steps for Tool-N1-7B and Tool-N1-14B. We report reward,
entropy loss, and the minimum response length.

We further analyze the training dynamics in Figure 7. The reward values increase rapidly, while the entropy
loss decreases gradually for both models, indicating a stable learning process. Additionally, Figure 7c shows the
minimum response lengths over training. We observe that Tool-N1-7B exhibits a steady increase, eventually
converging to the value achieved by Tool-N1-14B. In contrast, Tool-N1-14B maintains a relatively stable
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response length throughout training. This suggests that the smaller model undergoes greater improvements in
reasoning ability compared to the larger one.

D. Examples

Example 1: Single Function Calling
Query: Can you search for a hair stylist in Lafayette in Louisiana for me, please?
Output: <think>To search for a hair stylist in Lafayette, Louisiana, I will use the "Ser-
vices_1_FindProvider" function with the required city parameter.</think> <tool_call>[{"name": "Ser-
vices_1_FindProvider", "arguments": {"city" "Lafayette, LA"}}]</tool_call>
Example 2: Multiple Function Calling
Query: Imagine you are a drone operator. You are currently operating a drone that is at a point (5, 7) in
the sky. You are asked to move the drone to a new point (10, 15). After reaching the new point, you are
again asked to move the drone to another point (20, 25). Can you calculate the total distance the drone
has traveled using the Euclidean norm method?
Output: <think>To calculate the total distance the drone has traveled, I will use the "math.hypot"
function to calculate the Euclidean distance between each pair of points. First, I will calculate the
distance from the initial point (5, 7) to the new point (10, 15). Then, I will calculate the distance from
the new point (10, 15) to the final point (20, 25). The sum of these two distances will be the total
distance traveled by the drone.</think> <tool_call>[{"name": "math.hypot", "arguments": {"x": 5, "y":
7}}, {"name": "math.hypot", "arguments": {"x": 10, "y": 15}}, {"name": "math.hypot", "arguments": {"x":
20, "y": 25}}]</tool_call>

E. Prompts
We use identical prompts across model training, evaluation, and reasoning trajectory distillation from the
advanced model DeepSeek-R1. The specific prompt is provided below.

Full Prompt Template

You are an expert in composing functions. You are given a question and a set of possible functions.
Based on the question, you will need to make one or more function/tool calls to achieve the purpose. If
none of the function can be used, point it out. If the given question lacks the parameters required by the
function, also point it out. You should only return the function call in tools call sections.

# Tool
Here is a list of functions in JSON format that you can invoke:
<tools>
{tools}
</tools>.

In each action step, you MUST:
1. Think about the reasoning process in the mind and enclosed your reasoning within <think></think>
XML tags.
2. Then, provide a json object with function names and arguments within <tool_call> </tool_call>
XML tags. i.e., <tool_call>["name": <function-name>, "arguments": <args-json-object>, "name":
<function -name2>, "arguments": <args-json-object2>, ...]</tool_call>
3. Make sure both the reasoning and the tool call steps are included together in one single reply.

A complete reply example is: <think>To address the query, I need to send the email to Bob and
then buy the banana through walmart.</think> <tool_call> ["name":"email", "arguments":"receiver":
"Bob", "content": "I will bug banana through walmart", "name": "walmart", "arguments": "input":
"banana"]</tool_call>. Please make sure the type of the arguments is correct.

Figure 8: Full system prompts used during model training and inference.
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